3.1.76 \(\int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx\) [76]

Optimal. Leaf size=112 \[ \frac {\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {3 \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {2 \tan (c+d x)}{35 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac {2 \tan (c+d x)}{35 d \left (a^4+a^4 \sec (c+d x)\right )} \]

[Out]

1/7*tan(d*x+c)/d/(a+a*sec(d*x+c))^4+3/35*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^3+2/35*tan(d*x+c)/d/(a^2+a^2*sec(d*x+
c))^2+2/35*tan(d*x+c)/d/(a^4+a^4*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {3881, 3879} \begin {gather*} \frac {2 \tan (c+d x)}{35 d \left (a^4 \sec (c+d x)+a^4\right )}+\frac {2 \tan (c+d x)}{35 d \left (a^2 \sec (c+d x)+a^2\right )^2}+\frac {3 \tan (c+d x)}{35 a d (a \sec (c+d x)+a)^3}+\frac {\tan (c+d x)}{7 d (a \sec (c+d x)+a)^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + a*Sec[c + d*x])^4,x]

[Out]

Tan[c + d*x]/(7*d*(a + a*Sec[c + d*x])^4) + (3*Tan[c + d*x])/(35*a*d*(a + a*Sec[c + d*x])^3) + (2*Tan[c + d*x]
)/(35*d*(a^2 + a^2*Sec[c + d*x])^2) + (2*Tan[c + d*x])/(35*d*(a^4 + a^4*Sec[c + d*x]))

Rule 3879

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3881

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*Cot[e + f*x]*((a
+ b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx &=\frac {\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {3 \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^3} \, dx}{7 a}\\ &=\frac {\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {3 \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {6 \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{35 a^2}\\ &=\frac {\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {3 \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {2 \tan (c+d x)}{35 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac {2 \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{35 a^3}\\ &=\frac {\tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {3 \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {2 \tan (c+d x)}{35 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac {2 \tan (c+d x)}{35 d \left (a^4+a^4 \sec (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.26, size = 112, normalized size = 1.00 \begin {gather*} \frac {\sec \left (\frac {c}{2}\right ) \sec ^7\left (\frac {1}{2} (c+d x)\right ) \left (210 \sin \left (\frac {d x}{2}\right )-210 \sin \left (c+\frac {d x}{2}\right )+147 \sin \left (c+\frac {3 d x}{2}\right )-105 \sin \left (2 c+\frac {3 d x}{2}\right )+49 \sin \left (2 c+\frac {5 d x}{2}\right )-35 \sin \left (3 c+\frac {5 d x}{2}\right )+12 \sin \left (3 c+\frac {7 d x}{2}\right )\right )}{2240 a^4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + a*Sec[c + d*x])^4,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^7*(210*Sin[(d*x)/2] - 210*Sin[c + (d*x)/2] + 147*Sin[c + (3*d*x)/2] - 105*Sin[2*c +
 (3*d*x)/2] + 49*Sin[2*c + (5*d*x)/2] - 35*Sin[3*c + (5*d*x)/2] + 12*Sin[3*c + (7*d*x)/2]))/(2240*a^4*d)

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 58, normalized size = 0.52

method result size
derivativedivides \(\frac {-\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {3 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d \,a^{4}}\) \(58\)
default \(\frac {-\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {3 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d \,a^{4}}\) \(58\)
norman \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}-\frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}+\frac {3 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{40 a d}-\frac {\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )}{56 a d}}{a^{3}}\) \(80\)
risch \(\frac {2 i \left (35 \,{\mathrm e}^{6 i \left (d x +c \right )}+105 \,{\mathrm e}^{5 i \left (d x +c \right )}+210 \,{\mathrm e}^{4 i \left (d x +c \right )}+210 \,{\mathrm e}^{3 i \left (d x +c \right )}+147 \,{\mathrm e}^{2 i \left (d x +c \right )}+49 \,{\mathrm e}^{i \left (d x +c \right )}+12\right )}{35 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}\) \(91\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+a*sec(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

1/8/d/a^4*(-1/7*tan(1/2*d*x+1/2*c)^7+3/5*tan(1/2*d*x+1/2*c)^5-tan(1/2*d*x+1/2*c)^3+tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 87, normalized size = 0.78 \begin {gather*} \frac {\frac {35 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {5 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{280 \, a^{4} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sec(d*x+c))^4,x, algorithm="maxima")

[Out]

1/280*(35*sin(d*x + c)/(cos(d*x + c) + 1) - 35*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5/(cos(d*
x + c) + 1)^5 - 5*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/(a^4*d)

________________________________________________________________________________________

Fricas [A]
time = 5.49, size = 99, normalized size = 0.88 \begin {gather*} \frac {{\left (12 \, \cos \left (d x + c\right )^{3} + 13 \, \cos \left (d x + c\right )^{2} + 8 \, \cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{35 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sec(d*x+c))^4,x, algorithm="fricas")

[Out]

1/35*(12*cos(d*x + c)^3 + 13*cos(d*x + c)^2 + 8*cos(d*x + c) + 2)*sin(d*x + c)/(a^4*d*cos(d*x + c)^4 + 4*a^4*d
*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c) + a^4*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\sec {\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx}{a^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sec(d*x+c))**4,x)

[Out]

Integral(sec(c + d*x)/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x)/a**4

________________________________________________________________________________________

Giac [A]
time = 0.50, size = 59, normalized size = 0.53 \begin {gather*} -\frac {5 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 21 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 35 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 35 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{280 \, a^{4} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sec(d*x+c))^4,x, algorithm="giac")

[Out]

-1/280*(5*tan(1/2*d*x + 1/2*c)^7 - 21*tan(1/2*d*x + 1/2*c)^5 + 35*tan(1/2*d*x + 1/2*c)^3 - 35*tan(1/2*d*x + 1/
2*c))/(a^4*d)

________________________________________________________________________________________

Mupad [B]
time = 0.67, size = 58, normalized size = 0.52 \begin {gather*} -\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-21\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+35\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-35\right )}{280\,a^4\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)*(a + a/cos(c + d*x))^4),x)

[Out]

-(tan(c/2 + (d*x)/2)*(35*tan(c/2 + (d*x)/2)^2 - 21*tan(c/2 + (d*x)/2)^4 + 5*tan(c/2 + (d*x)/2)^6 - 35))/(280*a
^4*d)

________________________________________________________________________________________